Evolutionary developmental biology and embryonic development

chicken embryo

Evolutionary developmental biology is the biological field that compares the developmental process of different organisms to determine ancestral relationships between species. A large variety of organism’s genomes contain a small fraction of genes that control the organisms development. Hox genes are an example of these types of nearly universal genes in organisms pointing to an origin of common ancestry. Embryological evidence comes from the development of organisms at the embryological level with the comparison of different organisms embryos similarity. Remains of ancestral traits often appear and disappear in different stages of the embryological development process. Examples include such as hair growth and loss (lanugo) during human development; the appearance of transitions from fish to amphibians to reptiles and then to mammals in all mammal embryos; development and degeneration of a yolk sac; terrestrial frogs and salamanders passing through the larval stage within the egg—with features of typically aquatic larvae—but hatch ready for life on land; and the appearance of gill-like structures (pharyngeal arch) in vertebrate embryo development. Note that in fish, the arches continue to develop as branchial arches while in humans, for example, they give rise to a variety of structures within the head and neck.

Overview: Evolutionary developmental biology


Evolutionary developmental biology (evolution of development or informally, evo-devo) is a field of biology that compares the developmental processes of different organisms to determine the ancestral relationship between them, and to discover how developmental processes evolved. It addresses the origin and evolution of embryonic development; how modifications of development and developmental processes lead to the production of novel features, such as the evolution of feathers; the role of developmental plasticity in evolution; how ecology impacts in development and evolutionary change; and the developmental basis of homoplasy and homology.

Although interest in the relationship between ontogeny and phylogeny extends back to the nineteenth century, the contemporary field of evo-devo has gained impetus from the discovery of genes regulating embryonic development in model organisms. General hypotheses remain hard to test because organisms differ so much in shape and form.

Nevertheless, it now appears that just as evolution tends to create new genes from parts of old genes (molecular economy), evo-devo demonstrates that evolution alters developmental processes to create new and novel structures from the old gene networks (such as bone structures of the jaw deviating to the ossicles of the middle ear) or will conserve (molecular economy) a similar program in a host of organisms such as eye development genes in molluscs, insects, and vertebrates. Initially the major interest has been in the evidence of homology in the cellular and molecular mechanisms that regulate body plan and organ development. However more modern approaches include developmental changes associated with speciation.

Basic principles


Charles Darwin's theory of evolution is based on three principles: natural selection, heredity, and variation. At the time that Darwin wrote, the principles underlying heredity and variation were poorly understood. In the 1940s, however, biologists incorporated Gregor Mendel's principles of genetics to explain both, resulting in the modern synthesis. It was not until the 1980s and 1990s, however, when more comparative molecular sequence data between different kinds of organisms was amassed and detailed, that an understanding of the molecular basis of the developmental mechanisms has arisen.

Currently, it is well understood how genetic mutation occurs. However, developmental mechanisms are not understood sufficiently to explain which kinds of phenotypic variation can arise in each generation from variation at the genetic level. Evolutionary developmental biology studies how the dynamics of development determine the phenotypic variation arising from genetic variation and how that affects phenotypic evolution (especially its direction). At the same time evolutionary developmental biology also studies how development itself evolves.

Thus, the origins of evolutionary developmental biology come from both an improvement in molecular biology techniques as applied to development, and the full appreciation of the limitations of classic neo-Darwinism as applied to phenotypic evolution. Some evo-devo researchers see themselves as extending and enhancing the modern synthesis by incorporating into it findings of molecular genetics and developmental biology. Others, drawing on findings of discordances between genotype and phenotype and epigenetic mechanisms of development, are mounting an explicit challenge to neo-Darwinism.

Evolutionary developmental biology is not yet a unified discipline, but can be distinguished from earlier approaches to evolutionary theory by its focus on a few crucial ideas. One of these is modularity: as has been long recognized, plants and animal bodies are modular: they are organized into developmentally and anatomically distinct parts. Often these parts are repeated, such as fingers, ribs, and body segments. Evo-devo seeks the genetic and evolutionary basis for the division of the embryo into distinct modules, and for the partly independent development of such modules.

Another central idea is that some gene products function as switches whereas others act as diffusible signals. Genes specify proteins, some of which act as structural components of cells and others as enzymes that regulate various biochemical pathways within an organism. Most biologists working within the modern synthesis assumed that an organism is a straightforward reflection of its component genes. The modification of existing, or evolution of new, biochemical pathways (and, ultimately, the evolution of new species of organisms) depended on specific genetic mutations. In 1961, however, Jacques Monod, Jean-Pierre Changeux and François Jacob discovered within the bacterium Escherichia coli a gene that functioned only when "switched on" by an environmental stimulus. Later, scientists discovered specific genes in animals, including a subgroup of the genes which contain the homeobox DNA motif, called Hox genes, that act as switches for other genes, and could be induced by other gene products, morphogens, that act analogously to the external stimuli in bacteria. These discoveries drew biologists' attention to the fact that genes can be selectively turned on and off, rather than being always active, and that highly disparate organisms (for example, fruit flies and human beings) may use the same genes for embryogenesis , just regulating them differently.

Similarly, organismal form can be influenced by mutations in promoter regions of genes, those DNA sequences at which the products of some genes bind to and control the activity of the same or other genes, not only protein-specifying sequences. This finding suggested that the crucial distinction between different species (even different orders or phyla) may be due less to differences in their content of gene products than to differences in spatial and temporal expression of conserved genes. The implication that large evolutionary changes in body morphology are associated with changes in gene regulation, rather than the evolution of new genes, suggested that Hox and other "switch" genes may play a major role in evolution, something that contradicts the neo-darwinian synthesis.

Another focus of evo-devo is developmental plasticity, the basis of the recognition that organismal phenotypes are not uniquely determined by their genotypes. If generation of phenotypes is conditional, and dependent on external or environmental inputs, evolution can proceed by a "phenotype-first" route, with genetic change following, rather than initiating, the formation of morphological and other phenotypic novelties. The case for this was argued for by Mary Jane West-Eberhard in her 2003 book Developmental plasticity and evolution.


Sources

Prum, R.O., Brush, A.H. (March 2003). "Which Came First, the Feather or the Bird?". Scientific American 288 (3): 84–93. doi:10.1038/scientificamerican0303-84. PMID 12616863.

Hall, Brian K. (2000). "Evo-devo or devo-evo—does it matter". Evolution & Development 2 (4): 177–178. doi:10.1046/j.1525-142x.2000.00003e.x. PMID 11252559.

Palmer, RA (2004). "Symmetry breaking and the evolution of development". Science 306 (5697): 828–833. Bibcode 2004Sci...306..828P. doi:10.1126/science.1103707. PMID 15514148.

Tomarev, Stanislav I.; Callaerts, Patrick; Kos, Lidia; Zinovieva, Rina; Halder, Georg; Gehring, Walter; Piatigorsky, Joram (1997). "Squid Pax-6 and eye development". Proceedings of the National Academy of Sciences 94 (6): 2421–2426. Bibcode 1997PNAS...94.2421T. doi:10.1073/pnas.94.6.2421. PMC 20103. PMID 9122210.

Pichaud, Franck; Desplan, Claude (August 2002). "Pax genes and eye organogenesis". Current opinion in genetics and development 12 (4): 430–434. doi:10.1016/S0959-437X(02)00321-0. PMID 12100888.

Pennisi, E (2002). "EVOLUTIONARY BIOLOGY:Evo-Devo Enthusiasts Get Down to Details". Science 298 (5595): 953–955.. doi:10.1126/science.298.5595.953. PMID 12411686.

Monod, J; Changeux, JP; Jacob, F (1963). "Allosteric proteins and cellular control systems". Journal of Molecular Biology 6 (4): 306–329. doi:10.1016/S0022-2836(63)80091-1. PMID 13936070.

West-Eberhard, M-J. (2003). Developmental plasticity and evolution. New York: Oxford University Press. ISBN 978-0-19-512235-0.

Desmond 1989, pp. 53–53, 86–88, 337–340

Secord 2003, pp. 252–253

Bowler 2003, pp. 120–128, 208

Secord 2003, pp. 424, 512

Desmond & Moore 1991, pp. 490–491

Bowler 2003, pp. 170, 190–191

Darwin, Charles (1859). On the Origin of Species. London: John Murray. pp. 439–430. ISBN 0-8014-1319-2.

Ridley, Mark (2003). Evolution. Wiley-Blackwell. ISBN 978-1-4051-0345-9.

Gould, Stephen Jay (1977). Ontogeny and Phylogeny. Cambridge, Massachusetts: Harvard University Press. ISBN 0-674-63940-5.

Goodman CS and Coughlin BS (Eds). (2000). "Special feature: The evolution of evo-devo biology". Proceedings of the National Academy of Sciences 97 (9): 4424–4456. Bibcode 2000PNAS...97.4424G. doi:10.1073/pnas.97.9.4424. PMC 18255. PMID 10781035.

Müller GB and Newman SA (Eds.) (2005). "Special issue: Evolutionary Innovation and Morphological Novelty". Journal of Exp. Zool. Part B: Molecular and Developmental Evolution 304B: 485–631.

via Wikipedia