55 Videos Of Science Experiments For Kids To Do At Home

4 Guides Of Science Experiments For Kids To Do At Home. Included 55 Videos Of The Science Experiments For Kids. Science Experiments For Kids, Physic Experiments For Kids, Chemistry Experiments For Kids, Biology Experiments For Kids.

Vestigial Structures

baleen whale

 

The concept of vestigiality applies to genetically determined structures or attributes that have apparently lost most or all of its ancestral function in a given species.

A strong and direct evidence for common descent comes from vestigial structures. Rudimentary body parts, those that are smaller and simpler in structure than corresponding parts in the ancestral species, are called vestigial organs. They are usually degenerated or underdeveloped. The existence of vestigial organs can be explained in terms of changes in the environment or modes of life of the species. Those organs are typically functional in the ancestral species but are now either nonfunctional or re-purposed. Examples are the pelvic girdles of whales, haltere (hind wings) of flies and mosquitos, wings of flightless birds such as ostriches, and the leaves of some xerophytes (e.g. cactus) and parasitic plants (e.g. dodder). However, vestigial structures may have their original function replaced with another. For example, the halteres in dipterists help balance the insect while in flight and the wings of ostriches are used in mating rituals.

“The most reasonable conclusion to draw is that these creatures descended from creatures in which these parts were functional, which in turn indicates that most (or indeed all) creatures descended from common ancenstors.”

—Natan Slifkin, The Challenge of Creation, page 262

Overview

Vestigial features may take various forms; for example they may be patterns of behavior, anatomical structures, or biochemical processes. Like most other physical features, however functional, vestigial features in a given species may successively appear, develop, and persist or disappear at various stages within the life cycle of the organism, ranging from early embryonic development to late adulthood.

The term vestigiality is useful in referring to many genetically determined features, either morphological, behavioral, or physiological; in any such context however, it need not follow that a vestigial feature must be completely useless. A classic example at the level of gross anatomy is the human vermiform appendix — though vestigial in the sense of retaining no significant digestive function, the appendix still has immunological roles and is useful in maintaining gut flora.

Similar concepts apply at the molecular level — some nucleic acid sequences in eukaryotic genomes have no known biological function; some of them may be “junk DNA”, but it is a difficult matter to demonstrate that a particular sequence in a particular region of a given genome is truly nonfunctional. The simple fact that it is noncoding DNA does not establish that it is functionless. Furthermore, even if an extant DNA sequence is functionless, it does not follow that it has descended from an ancestral sequence of functional DNA. Logically such DNA would not be vestigial in the sense of being the vestige of a functional structure. In contrast pseudogenes have lost their protein-coding ability or are otherwise no longer expressed in the cell. Whether they have any extant function or not, they have lost their former function and in that sense they do fit the definition of vestigiality.

Vestigial structures are often called vestigial organs, although many of them are not actually organs. Such vestigial structures typically are degenerate, atrophied, or rudimentary, and tend to be much more variable than homologous non-vestigial parts. Although structures commonly regarded “vestigial” may have lost some or all of the functional roles that they had played in ancestral organisms, such structures may retain lesser functions or may have become adapted to new roles in extant populations.

It is important to avoid confusion of the concept of vestigiality with that of exaptation. Both may occur together in the same example, depending on the relevant point of view. In exaptation a structure originally used for one purpose is modified for a new one. For example, the wings of penguins would be exaptational in the sense of serving a substantial new purpose (underwater locomotion), but might still be regarded as vestigial in the sense of having lost the function of flight. In contrast Darwin argued that the wings of emus would be definitely vestigial, as they appear to have no major extant function; however, function is a matter of degree, so judgements on what is a “major” function are arbitrary; the emu does seem to use its wings as organs of balance in running. Similarly, the ostrich uses its wings in displays and temperature control, though they are undoubtedly vestigial as structures for flight.

Vestigial characters range from detrimental through neutral to favorable in terms of selection. Some may be of some limited utility to an organism but still degenerate over time if they do not confer a significant enough advantage in terms of fitness to avoid the effects of genetic drift or competing selective pressures. Vestigiality in its various forms presents many examples of evidence for biological evolution.

 

 

Common Descent and Evolutionary Theory

Vestigial structures are often homologous to structures that are functioning normally in other species. Therefore, vestigial structures can be considered evidence for evolution, the process by which beneficial heritable traits arise in populations over an extended period of time. The existence of vestigial traits can be attributed to changes in the environment and behavior patterns of the organism in question. As the function of the trait is no longer beneficial for survival, the likelihood that future offspring will inherit the “normal” form of it decreases. In some cases the structure becomes detrimental to the organism (for example the eyes of a mole can become infected). In many cases the structure is of no direct harm, yet all structures require extra energy in terms of development, maintenance, and weight, and are also a risk in terms of disease (e.g., infection, cancer), providing some selective pressure for the removal of parts that do not contribute to an organism’s fitness. A structure that is not harmful will take longer to be ‘phased out’ than one that is. However, some vestigial structures may persist due to limitations in development, such that complete loss of the structure could not occur without major alterations of the organism’s developmental pattern, and such alterations would likely produce numerous negative side-effects. The toes of many animals such as horses, which stand on a single toe, are still evident in a vestigial form and may become evident, although rarely, from time to time in individuals.

The vestigial versions of the structure can be compared to the original version of the structure in other species in order to determine the homology of a vestigial structure. Homologous structures indicate common ancestry with those organisms that have a functional version of the structure. Douglas Futuyma has stated that vestigial structures make no sense without evolution, just as spelling and usage of many modern English words can only be explained by their Latin or Old Norse antecedents.

Vestigial traits can still be considered adaptations. This is because an adaptation is often defined as a trait that has been favored by natural selection. Adaptations, therefore, need not be adaptive, as long as they were at some point.

Examples in Animals

Vestigial characters are present throughout the animal kingdom, and an almost endless list could be given. Darwin said that “[i]t would be impossible to name one of the higher animals in which some part or other is not in a rudimentary condition.”

In whales and other cetaceans, one can find small vestigial leg bones deeply buried within the back of the body.These are remnants of their land-living ancestors’ legs. All mysticetes have uniquely shaped pelvic bones in the anterior part of their torsos. They are functionally significant structures for the purposes of copulation and defecation.

The wings of ostriches, emus, and other flightless birds are vestigial; they are remnants of their flying ancestors’ wings.

The eyes of certain cavefish and salamanders are vestigial, as they no longer allow the organism to see, and are remnants of their ancestors’ functional eyes.

Boas and pythons have vestigial pelvis remnants, which are externally visible as two small pelvic spurs on each side of the cloaca. These spurs are sometimes used in copulation, but are not essential, as no colubroid snake (the vast majority of species) possesses these remnants. Furthermore, in most snakes the left lung is greatly reduced or absent. Amphisbaenians, which independently evolved limblessness, also retain vestiges of the pelvis as well as the pectoral girdle, and have lost their right lung.

The fruit fly can be bred in high school experiments to produce offspring with vestigial wings, to better understand basic genetics in biology.

Examples in Humans

Human vestigiality is related to human evolution, and includes a variety of characters occurring in the human species. Many examples of these are vestigial in other primates and related animals, whereas other examples are still highly developed. The human caecum is vestigial, as often is the case in omnivores, being reduced to a single chamber receiving the content of the ileum into the colon. The ancestral caecum would have been a large, blind diverticulum in which resistant plant material such as cellulose would have been fermented in preparation for absorption in the colon. Analogous organs in other animals similar to humans continue to perform similar functions. An alternative explanation would be the possibility that natural selection selects for larger appendices because smaller and thinner appendices would be more susceptible to inflammation and disease. The coccyx, or tailbone, though a vestige of the tail of some primate ancestors, is functional as an anchor for certain pelvic muscles.

Other structures that are vestigial include the plica semilunaris on the inside corner of the eye (a remnant of the nictitating membrane); and, as pictured, muscles in the ear and other parts of the body. Other organic structures (such as the occipitofrontalis muscle) have lost their original functions (keep the head from falling) but are still useful for other purposes (facial expression).

Humans also bear some vestigial behaviors and reflexes. The formation of goose bumps in humans under stress is a vestigial reflex; its function in human ancestors was to raise the body’s hair, making the ancestor appear larger and scaring off predators.

Infants will instinctively grasp any object which touches the palm, in some cases strongly enough to support their own weight.

There are also vestigial molecular structures in humans, which are no longer in use but may indicate common ancestry with other species. One example of this is L-gulonolactone oxidase, a gene, that is functional in most other mammals, which produces an enzyme that can make vitamin C. A purported mutation deactivated the gene in an ancestor of the current group of primates, and it now remains in the human genome as a vestigial sequence called a pseudogene.

 

 

Sources

Lawrence, Eleanor (2005) Henderson’s Dictionary of Biology. Pearson, Prentice Hall. ISBN 0-13-127384-1

Muller, G. B. (2002) “Vestigial Organs and Structures.” in Encyclopedia of Evolution. Mark Pagel, editor in chief, New York: Oxford University Press. pp 1131-1133

Aristotle.”History of Animals” (Book 1, Chapter 9)

St. Hilaire, Geoffroy (1798). “Observations sur l’aile de l’Autruche, par le citoyen Geoffroy”, La Decade Egyptienne, Journal Litteraire et D’Economie Politique 1 (pp. 46–51).

Lamarck, Jean-Baptiste (1809). Philosophie zoologique ou exposition des considérations relatives à l’histoire naturelle des animaux.

Darwin, Charles (1859). On the Origin of Species by Means of Natural Selection. John Murray: London.

Darwin, 1859, pp. 134–139. Barrett P. H. et al. 1981, A concordance to Darwin’s Origin of Species first edition, Cornaell, Ithaca and London, lists only four mentions of the phrase “use and disuse”.

Desmond A. & Moore, J. (1991) Darwin Penguin Books p.617 “Darwin was loathe [sic?] to let go of the notion that a well-used and strengthened organ could be inherited”

Darwin (1872) The Origin of Species, 6th Edn., p. 421

Wiedersheim, Robert (1893). The Structure of Man: an index to his past history. London: Macmillan and Co. http://openlibrary.org/books/OL7171834M/structure_of_man_an_index_to_his_past_history

Darrow, Clarence and William J. Bryan. (1997). The World’s Most Famous Court Trial: The Tennessee Evolution Case Pub. The Lawbook Exchange, Ltd. p. 268

Reeder, Alex (29 December 1997). “Evolution: Evidence from Living Organisms”. Bioweb. Retrieved 2008-10-16.

Futuyma, D. J. (1995). Science on Trial: The Case for Evolution. Sunderland, MA: Sinauer Associates Inc.. pp. 49. ISBN 0-87893-184-8.

Sober, E. (1993). Philosophy of Biology. Boulder: Westview Press. pp. 84.

Bejder L, Hall BK (2002). “Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss”. Evol. Dev. 4 (6): 445–58. doi:10.1046/j.1525-142X.2002.02033.x. PMID 12492145.

Simoes-lopes, Paulo; Gutstein (2004). “Notes on the anatomy, positioning and homology of the pelvic bones of small cetaceans (Cetacea: Delphinidae, Pontoporiidae).”. The Latin American Journal of Aquatic Mammals 3 (2): 157–162.

Darwin, Charles (1871). The Descent of Man, and Selection in Relation to Sex. John Murray: London.

“Purpose of appendix believed found”. CNN/AP. 2007-10-05. Archived from the original on 2008-06-26. Retrieved 2008-10-16.

Bollinger, RR; Barbas, AS; Bush, EL, et al. (2007). “Biofilms in the large bowel suggest an apparent function of the human vermiform appendix”. Journal of Theoretical Biology 249 (4): 826–831. doi:10.1016/j.jtbi.2007.08.032. PMID 17936308.

“The old curiosity shop”. New Scientist. 2008-05-17.

Saraga-Babić M, Lehtonen E, Svajger A, Wartiovaara J (1994). “Morphological and immunohistochemical characteristics of axial structures in the transitory human tail”. Ann. Anat. 176 (3): 277–86. PMID 8059973